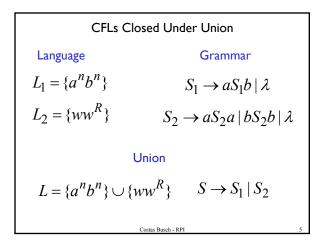
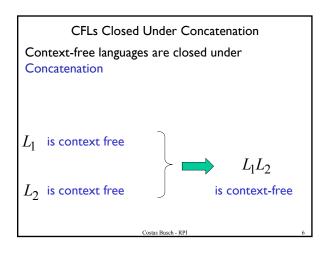
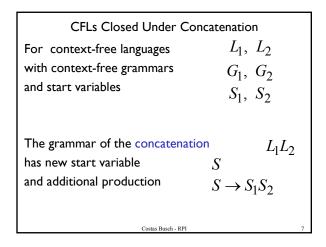


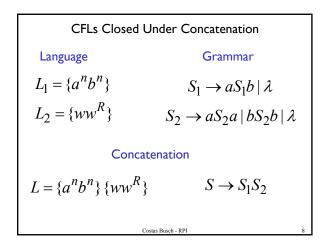
CFLs Closed Under Union Proof-by-construction: There is a CFG G_{AUB} that recognizes $A \cup B$. Since A and B are CFLs, there are CFGs $G_A = (V_A, T_A, P_A, S_A)$ and $G_B = (V_B, T_B, P_B, S_B)$ that generate A and B. $G_{AUB} = (V_A \cup V_B, T_A \cup T_B, P_{AUB}, S_0)$ $P_{AUB} = P_A \cup P_B \cup \{S_0 \rightarrow S_A\} \cup \{S_0 \rightarrow S_B\}$ Assumes V_A and V_B are disjoint

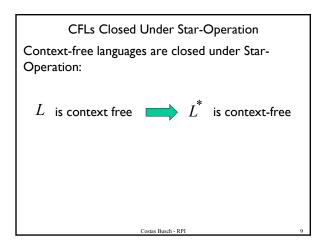
CFLs Closed Under Union	
In general: For context-free languages with context-free grammars and start variables	L_1, L_2 G_1, G_2 S_1, S_2
The grammar of the union has new start variable and additional production	$L_1 \cup L_2$ S $S \to S_1 \mid S_2$
Costas Busch - RPI	4



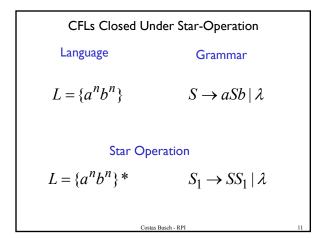




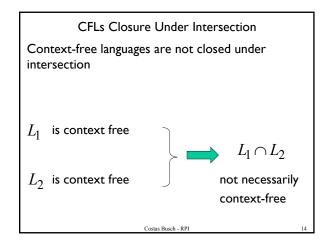


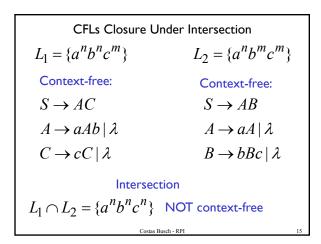


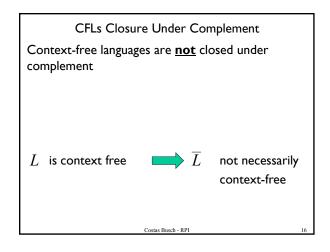
CFLs Closed Under Star-Operation
Proof-by-construction:
There is a CFG
$$G^*$$
 that recognizes A^* .
 $G = (V, T, P, S)$
 $G^* = (V \cup \{S_0\}, \Sigma, P^*, S_0)$
 $P^* = P \cup \{S_0 \rightarrow S\} \cup \{S_0 \rightarrow S_0S_0\} \cup \{S_0 \rightarrow \varepsilon\}$



CFLs Closed Under ReverseProof-by-construction:There is a CFG $G^{\mathbb{R}}$ that recognizes $A^{\mathbb{R}}$.G = (V, T, P, S) $G^{\mathbb{R}} = (V, T, P^{\mathbb{R}}, S)$ $P^{\mathbb{R}} = \{A \rightarrow \alpha^{\mathbb{R}} \mid A \rightarrow \alpha \in P \}$

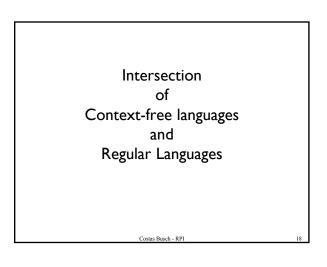


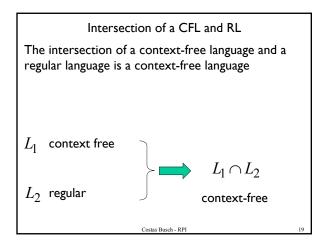


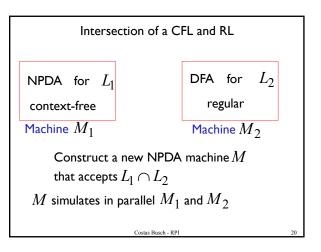


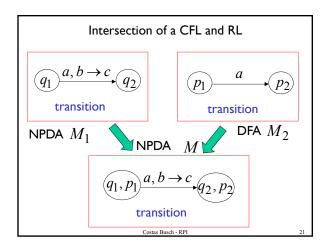
CFLs Closure Under Complement

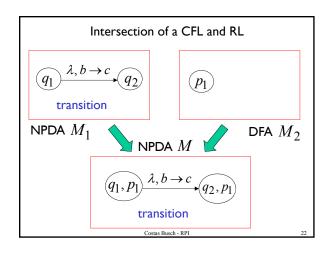
$$L_1 = \{a^n b^n c^m\}$$
 $L_2 = \{a^n b^m c^m\}$
Context-free:
 $S \rightarrow AC$
 $S \rightarrow AB$
 $A \rightarrow aAb \mid \lambda$
 $A \rightarrow aA \mid \lambda$
 $C \rightarrow cC \mid \lambda$
 $B \rightarrow bBc \mid \lambda$
Complement
 $\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$
NOT context-free
Costs Back-- RPI

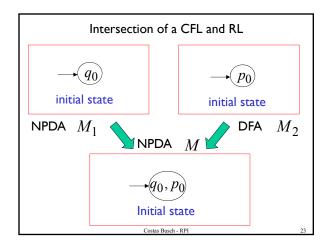


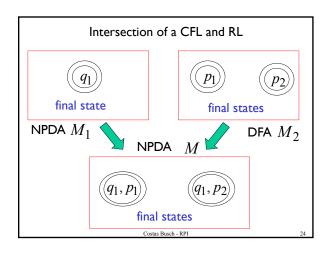


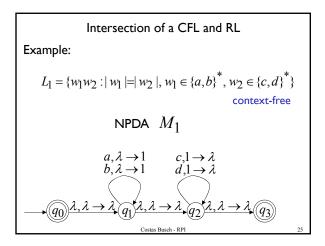


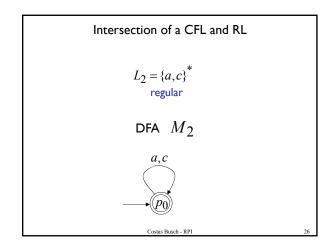


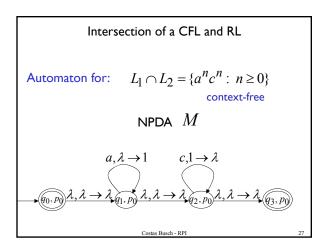


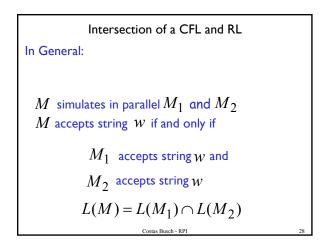


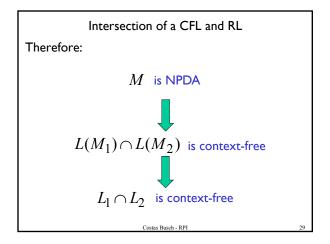












Decidable Properties of CFLs

Membership Question

For context-free grammar G find if string $w \in L(G)$

Costas Busch - RPI

Membership Algorithms

Parsers

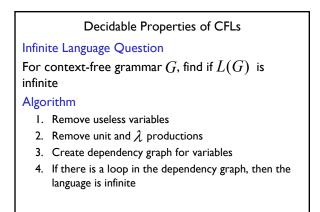
- Exhaustive search parser
- CYK parsing algorithm

Decidable Properties of CFLs

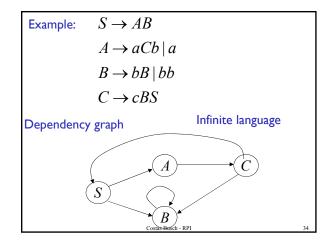
Empty Language Question For context-free grammar G, find if $L(G) = \emptyset$

Algorithm

- I. Remove useless variables
- 2. Check if start variable S is useless



Costas Busch - RPI



Costas Busch - RPI

$$S \rightarrow AB$$

$$A \rightarrow aCb \mid a$$

$$B \rightarrow bB \mid bb$$

$$C \rightarrow cBS$$

$$S \Rightarrow AB \Rightarrow aCbB \Rightarrow acBSbB \Rightarrow acbbSbbb$$

$$*$$

$$S \Rightarrow acbbSbbb \Rightarrow (acbb)^{2} S(bbb)^{2}$$

$$*$$

$$\Rightarrow (acbb)^{i} S(bbb)^{i}$$
Costas Basch - RPI 35